If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+0.7x=61185
We move all terms to the left:
2x^2+0.7x-(61185)=0
a = 2; b = 0.7; c = -61185;
Δ = b2-4ac
Δ = 0.72-4·2·(-61185)
Δ = 489480.49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0.7)-\sqrt{489480.49}}{2*2}=\frac{-0.7-\sqrt{489480.49}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0.7)+\sqrt{489480.49}}{2*2}=\frac{-0.7+\sqrt{489480.49}}{4} $
| 12x+5=9x+32 | | x-5.5=13.53 | | −x=9 | | 5x=12x-1.7 | | 4x-4+5x-3=-4x-46 | | 5.4x-16.5=21.3 | | 14r+6=20 | | (x+54)+90+5x=180 | | 3x-12=2x-18 | | -5(x+8)=18 | | 8x^2−3x−13=−x−10 | | 5x=0.512x-1.7 | | 9x+10=-6x-18 | | 7.n=343 | | s+42=75 | | 8x^2-3x-13=−x−10 | | 3=2c−5 | | 12q+1=13 | | m=2(m-5)=2m+2 | | y-71=211 | | 96=(s+8)5 | | 4x+8=6x+8-2x | | (X-3)(1/2x-6)=0 | | 45+15+4x+90=180 | | 12(v+1)=12 | | 3q=15+6,q= | | 5/12g=6/11 | | 4(t+5=4 | | 10u−7u=6 | | 15c-10c-7c=40-2c | | 4(2x+)=52 | | 35+5x+90=180 |